Activation of the endomitotic spindle assembly checkpoint and thrombocytopenia in Plk1-deficient mice.

نویسندگان

  • Marianna Trakala
  • David Partida
  • María Salazar-Roa
  • María Maroto
  • Paulina Wachowicz
  • Guillermo de Cárcer
  • Marcos Malumbres
چکیده

Polyploidization in megakaryocytes is achieved by endomitosis, a specialized cell cycle in which DNA replication is followed by aberrant mitosis. Typical mitotic regulators such as Aurora kinases or Cdk1 are dispensable for megakaryocyte maturation, and inhibition of mitotic kinases may in fact promote megakaryocyte maturation. However, we show here that Polo-like kinase 1 (Plk1) is required for endomitosis, and ablation of the Plk1 gene in megakaryocytes results in defective polyploidization accompanied by mitotic arrest and cell death. Lack of Plk1 results in defective centrosome maturation and aberrant spindle pole formation, thus impairing the formation of multiple poles typically found in megakaryocytes. In these conditions, megakaryocytes arrest for a long time in mitosis and frequently die. Mitotic arrest in wild-type megakaryocytes treated with Plk1 inhibitors or Plk1-null cells is triggered by the spindle assembly checkpoint (SAC), and can be rescued in the presence of SAC inhibitors. These data suggest that, despite the dispensability of proper chromosome segregation in megakaryocytes, an endomitotic SAC is activated in these cells upon Plk1 inhibition. SAC activation results in defective maturation of megakaryocytes and cell death, thus raising a note of caution in the use of Plk1 inhibitors in therapeutic strategies based on polyploidization regulators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of Polo-like Kinase 1 in the Assembly of Functional Mitotic Spindles

BACKGROUND The stable association of chromosomes with both poles of the mitotic spindle (biorientation) depends on spindle pulling forces. These forces create tension across sister kinetochores and are thought to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint. Polo-like kinase 1 (Plk1) has been implicated in regulating centrosome maturation, mitotic entry, ...

متن کامل

Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1.

Wnt signalling is known to promote G1/S progression through the stimulation of gene expression, but whether this signalling regulates mitotic progression is not clear. Here, the function of dishevelled 2 (Dvl2), which transmits the Wnt signal, in mitosis was examined. Dvl2 localized to the spindles and spindle poles during mitosis. When cells were treated with nocodazole, Dvl2 was observed at t...

متن کامل

PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition

Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1-Thr210 phosphorylation. Plk1-Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown...

متن کامل

Multiple Requirements of PLK1 during Mouse Oocyte Maturation

Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, usi...

متن کامل

Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1).

Although the essential function of checkpoint kinase 1 (Chk1) in DNA damage response has been well established, the role of Chk1 in normal cell cycle progression is unclear. By using RNAi to specifically deplete Chk1, we determined loss-of-function phenotypes in HeLa cells. A vector-based RNAi approach showed that Chk1 is required for normal cell proliferation and survival, inasmuch as a dramat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 126 14  شماره 

صفحات  -

تاریخ انتشار 2015